The effects of Fe-addition on phase transformation behavior, mechanical properties and microstructure of Ti_{50}Ni_{50-x}Fe_{x} alloys were investigated by means of optical microscopy, Differential Scanning Calorimetry and X-ray diffraction (XRD). Results indicate that, as a substitute for Ni, Fe added to TiNi alloys can dramatically decrease the martensite transformation temperature and R phase transformation and martensite transformation are accordingly separated. The results show that TiNiFe alloys exhibit two-step martensitic transformation. The start temperature of martensitic transformation increases sharply from 245 K to 267 K when 4% Fe is added in, and then decreases gradually if Fe content further increases. The hardness of TiNiFe ternary alloys before heat treatment is constant for up to 4% of the composition and suddenly increases for 8% composition and also it behaves same for heat treated specimens because of formation of equilibrium precipitates Ni_{3}Ti formation.

Keywords: TiNiFe; Shape Memory Alloy; Martensite Transformation; Mechanical Properties; Microstructure.

I. INTRODUCTION
Near-equiatomic NiTi shape memory alloys (SMAs) have found wide application in aerospace, aviation, and medical industries owing to their superior functional properties of shape memory effect (super elasticity), biocompatibility as well as excellent mechanical properties.[1-16] In order to modify and ameliorate the properties of the NiTi alloys to meet specific requirements by unique users, addition of tiny amounts of some alloying elements into the binary and ternary SMAs has become a well-known adopted means and way. However, different alloying elements will exert different influences upon the alloys having the identical basic composition. For example, in the ternary alloys Ni-Ti-X, if X is referred to Pd, Hf, Pt, or Zr, they exhibit relatively high martensitic start transformation temperature (M_s)[17-27], and if X is referred to Fe, Nb, Mo, Al, they have a sharply decreased M_s.[28-31] Recently, much more efforts have been devoted, experimentally or theoretically, to the study on the effects of adding ternary element on NiTi-, Cu-, and Fe-based SMAs [transformation temperature of TiNi-based alloys varies dramatically with their composition. A slight and adding the third element can also influence the mechanical properties of the NiTi-based alloys].[21-31] Till now, a lot of studies have been devoted to the influences of the third element like Fe, Cu, Nb, etc., on the transformation behaviour and shape memory effects and/or super elasticity.[21,27,31-36] In 1971, elastic properties of TiNiFe shape memory alloy wires were evaluated by Andresen to develop TiNi-based shape memory alloys for medical application.[10] However, phase transformation behaviour and mechanical properties of TiNiFe alloy have not been reported. The present paper is aimed to fill this void. The present work is carried out on the basic Ti-Ni-Fe ternary alloys. These alloys, as distinct from NiTi binary alloys, generally show a two-step phase transformation on both cooling and heating processes without any special thermal and thermo mechanical treatments. This makes it easy to study the influences of adding RE on the phase transformation and microstructure of Ti_{50}Ni_{48}Fe_{2} SMAs.
II. METHODOLOGY & MATERIAL
Preparation of samples by melting Nitinol with the addition of Ternary alloying additions (Fe) to the nearly equiatomic NiTi alloys shown in table 3.1 , their atomic mass % shown in table 3.2 and casting into ingots (rods) The rod to be then cut into strips using wire EDM and the strips to be effectively given reductions in thickness of 20, 30 & 40% by cold rolling. The shape memory effect (SME), hardness, and super elasticity to be measured for the different conditions. SME effect is intended to be Measured based on the ASTM standards and "Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys to be accomplished by Bend and Free Recovery". The experiment to be designed such that both the cold rolled and the as-received samples would be subjected to bending strain values of 2.5, 5 and 10% using the three point bending test. According to the equation ε=T/D, The choice of the sample thickness (T) and mandrels diameters (D) to be made according to the desired bending strain values (ε). According to the ASTM standard, alloys that are super elastic at room temperature should be tested for martensitic transformation in an alcohol bath and has to be loaded at critical temperature to test for the effect of cold working on the ternary alloy system. After bending, the samples to be removed from the fixture and the spring back angle to be measured, θsp, without removing the samples from the cold bath. θsp is the angle between the two ends of the sample while still inside the cold alcohol bath. The samples to be removed from the cold bath into the atmosphere, where the samples should recover back to the austenite phase, and the final angle reached after recovery to be measured, θf. The shape memory recovery (SMR) to be then measured with appropriate calculations. As-cast and cold rolled samples to be tested for hardness with 12-25 indents performed on each, fatigue, wear (abrasive and adhesive wear on pin on disc type of wear testing machine), and super elasticity. (In order to measure super elasticity Polynomial regression to be used to find equations that fit both the loading and unloading curve of each indent since these curves are supposed to a polynomial relation. The equations that are obtained to be then integrated and the ratio of the area under unloading curve to the area under the loading curve to be effectively computed).

III. EXPERIMENTAL WORK
Choosing the composition of the alloy with varying Iron contents

| Table 3.1: Selected alloy compositions (atomic %) for experimental work |
|-----------------|----------------|----------------|----------------|
| Alloy | Ti (At %) | Ni (At %) | Fe (At %) | Total (%) |
| NiTi | 50 | 50 | 0 | 100 |
| NiTiFe | 50 | 46 | 4 | 100 |
| NiTiFe | 50 | 42 | 8 | 100 |

| Table 3.2 Atomic mass of the raw material |
|----------------|----------------|
| Material | Atomic Mass |
| Ti | 47.88 |
| Ni | 69.00 |
| Fe | 55.84 |
To weigh out the materials conversion from at (%) to wt (%) is done by using following relation

\[
Wt\%A = \frac{\text{atom}\%A \times \text{at wt } A}{(\text{atom}\%A \times \text{at wt } A) + (\text{atom}\%B \times \text{at wt } B) + (\text{atom}\%C \times \text{at wt } C)}
\]

(I)

| Table 3.3: Alloy composition wt (%) selected for experimental work |
|------------------|---------------|---------|------|
| Alloy | Ti(At%) | Ni(At%) | Fe(At%) | Total(%) |
| NiTi | 44.932 | 55.070 | 0 | 100.000 |
| NiTiFe | 45.000 | 50.850 | 4.150 | 100.000 |
| NiTiFe | 45.070 | 47.020 | 8.008 | 100.000 |

| Table 3.4: 10g composition selected for experimental work |
|------------------|---------------|---------|------|
| Alloy | Ti(gms) | Ni(gms) | Fe(gms) | Total(gms) |
| NiTi | 4.4932 | 5.507 | 0 | 10 |
| NiTiFe | 4.500 | 5.085 | 0.415 | 10 |
| NiTiFe | 4.507 | 4.702 | 0.800 | 10 |

The metals are weighed accurately to the above values shown in Table 3.3, 3.4 separately and taken for melting in vacuum arc melting furnace. This is done by striking an electrical arc between a tungsten electrode and the raw material on a water-cooled copper strike plate. Melting is done in Argon, and the mould itself is water cooled copper, so no carbon is introduced during melting. The experimental SMA ingots were prepared through no consumable vacuum arc melting process by using a water-cooled copper hearth in argon atmosphere. Ti (purity 99.9 wt. %), Ni (purity 99.9 wt. %) and Fe (purity 99.9 wt. %), were mixed together and were repeatedly melted for four times for homogenization. The nominal composition of the as-prepared alloys is \(Ti_{50}Ni_{46}Fe_{4} \), \(Ti_{50}Ni_{41}Fe_{9} \), \(Ti_{50}Ni_{40}Fe_{10} \), in terms of at. %. Then the ingots were sealed in vacuum quartz capsules and underwent homogenization at 850 °C for 24 h followed by quenching in water with the seal unbroken. Homogenized alloys were spark-cut in different gauge dimensions for measurements. The phase transformation was investigated on an electrical resistance (E-R) apparatus with a heating/cooling rate of 1 K/min. Optical microstructure were determined on an Olympus metallurgical optical microscope.

IV. RESULT & DISCUSSION

Microstructure of \(Ni_{50}Ti_{50-x}Fe_{x} \)

Optical microscopy

Fig.4.1.1 shows the optical micrographs of \(Ti_{50}Ni_{50-x}Fe_{x} (x=0, 4, 8) \) alloys. It is noted that the as-homogenized alloys are characterized by large grains (100-500 µm) and uniform composition. In comparison with the clean morphology of \(Ti_{50}Ni_{50}Fe_{x} \), many small black spherical precipitates are observed inside the grains as well as along the grain boundaries in the Fe containing alloys (see Fig.4.1.1 (b)-Fig.4.1.1 (e)). However, no obviously contrasting morphology is discovered in the low-resolution images. Further microstructural details can be identified by using back-scattering electron microscopy. Both heat treated (HT) and without heat treatment (WHT) images shown below.
(a) NiTi as-cast condition

(b) NiTi heat treated (300 °C)

(c) NiTi heat treated (400 °C)

(d) NiTiFe(3%) as cast condition

(e) NiTiFe(3%) heat treated (300 °C)

(f) NiTiFe(3%) heat treated (400 °C)

(g) NiTiFe(9%) as cast condition

(h) NiTiFe(9%) heat treated (300 °C)
Differential Scanning Calorimetry

First DSC runs were attempted from room temperature and up on casts without any luck. The cast samples are heavily cored, with residual stresses from rapid solidification and with the possibility of higher Ni in Nitinols failed to reveal any reaction during heating up from ambient or during cooling. Hence the tests were performed on a low temperature setup. The graphs below show the transformation temperature ranges for the different compositions of Nitinol in both as-cast and heat-treated conditions.
Fig. 4.2(e) DSC curve for as-cast NiTiFe(8%) alloy Fig. 4.2(f) DSC curve for NiTiFe (8%)-HT 400°C alloy

X-Ray Diffraction

The figures below demonstrate the X-ray diffraction curves for both the as-cast and the heat-treated Nitinol alloys.

Fig. 4.31(a)(b)(c) XRD graphs of NiTi specimens
Hardness test is performed on vicker’s hardness tester equipment. Micro-hardness testing was done on the specimens. The test surfaces of the specimens are well polished. Load of 2kg was applied to test the specimens. During the test a square based 136° shaped diamond indentor was used in testing. The rhombus is formed on the specimen surface when it has hit by the diamond indentor. The diagonals of these rhombus is measured and hardness is measured using the formula

$$Vicker's \ \text{Hardness} \ \ HV = \frac{1.854F}{d^2}$$

where ‘F’ is the load applied in kg and ‘D’ is the mean of lengths of the diagonals of square indentation.

And the hardness value got for different composition is shown in Table 4.4.1 and Hardness plot against different specimen composition for Before heat treatment and After heat treated specimens is shown in Fig 4.4.1.
Table 4.4.1: Hardness Results For Before Heat Treatment and After Heat Treatment

<table>
<thead>
<tr>
<th>SPECIMENS</th>
<th>BEFORE HEAT TREATMENT</th>
<th>AFTER HEAT TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-50% , Ti-50% , Fe 0%</td>
<td>310.3</td>
<td>318.3</td>
</tr>
<tr>
<td>Ni-46% , Ti-50% , Fe 4%</td>
<td>286.7</td>
<td>324.7</td>
</tr>
<tr>
<td>Ni-42% , Ti-50% , Fe 8%</td>
<td>345.5</td>
<td>296.8</td>
</tr>
</tbody>
</table>

Fig 4.4.1: Hardness plot against different specimen composition Before heat treatment and After heat treatment

V. CONCLUSION

After successful completion of the experimentation on wear and corresponding hardness characteristics of specimen, the following conclusion can be drawn. The hardness of the ternary alloy is found to increase for iron content varying from 4 to 8% whereas it seems to be decreasing for less than 4%. The experimentation conducted on wear characteristics have given results in which the wear in NiTi alloy and NiTiFe alloy with 4% Fe (iron) in the alloying percentage of 4% whereas it decreases for 8%. In the proposed work, the ternary alloy iron is added for martensite suppression which is basically very much necessary for orthodontic implantation. Henceforth we have carried out experimentation to predict the effect of iron on NiTi binary alloy system. It is found from optical microscopy that the grain size of NiTi atoms are ranging in between 7.5 to 8µm² and the iron atoms are found to be distributed all around the grain boundaries. It is seen from the above micrographs taken at 100x, 200x and 500x that the NiTiFe reveal fine structures showing various precipitates that are black streaks running through the structure in the NiTi matrix. These fine precipitates are formed along with the NiTi and represent the Fe dispersed along the grain boundaries of NiTi and NiTi forms a strong intermetallic bond with distinct grain peripheries being visible in the microstructure. It is seen from the above micrographs that the grains in heat treated samples have undergone coring (micro-segregation) with fine dendritic growth of NiTi phase with the interdendritic filling of eutectics mostly TiFe intermetallic bonds being formed along the grain boundary of Ni atoms. Also it is clearly visible that in NiTiFe samples there is growth or coarsening of the cast structure and it is observed that the grains have begun appear with the strong contrast of the cast structure receding. The internal stresses in the sample may start to decrease because of growth of micro constituents. Further in the heat-treated samples the grains of NiTi are seen clearly as the cast dendrites have totally disappeared. The 40-60 micron sized grains of NiTi reveal the presence of very fine precipitates of Fe of the range of 7.5-8 microns around the periphery of grains due to aging along with some coarse ones that originated during solidification of molten metal.
REFERENCES